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Flow and heat transfer inside a square cavity with double-sided oscillating lids have been studied numer-
ically. The oscillating angular frequency of lid motion, -, and Reynolds number, Re, are two important
parameters in this study. In terms of primary vortices, simulations at Re and - up to 1000 and 5, respec-
tively, showed that the flow patterns can be categorized into four modes: (i) a pair of vertical vortices, (ii)
a pair of swing vortices, (iii) diagonal-dominated vortices and (iv) two pairs of swing vortices. The flow
patterns change at different frequencies for Reynolds numbers greater than 300. Nevertheless, the oscil-
lating frequency did not offer significant effect to change flow pattern at very low Reynolds number such
as at Re 6 10. Heat transfer, represented by average Nusselt number (Nu) along the lids is increased at
higher Re whereas it is decreased as - increases.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Lid-driven cavity flow is found in many engineering applica-
tions, for example, within mixing, coating and drying technologies.
There are many numerical studies in classical single lid-driven cav-
ity flow conducted by researchers and some of them can be found
from Refs. [1–8]. Some studies of cavity flow with an oscillating lid
have been done by few researchers [9–13]. Soh and Goodrich [9]
introduced a new time-accurate finite difference method to solve
unsteady incompressible Navier–Stokes equations in primitive
variables. They solved flows inside a cavity with an impulsively
starting lid and an oscillating lid at Re = 400 by using solution of
lid-driven cavity flow with constant lid speed as an initial condi-
tion. Their results give a basic information of cavity flow with an
oscillating lid. Iwatsu et al. [10] performed a numerical investiga-
tion to study the effect of external excitation on the flow structure
in a square cavity. They found less variation of flow structures in
low frequency values. Nishimura and Kunitsugu [11] studied fluid
mixing and mass transfer in two-dimensional cavities with an
oscillating lid. They used the Galerkin finite element method to
solve cavity flow problems for different amplitudes of the oscillat-
ing wall velocity, Strouhal number and aspect ratio. The simula-
tions have been performed at low Reynolds number equal to 50.
It was shown that the mixing depends on an optimum oscillatory
frequency, oscillating amplitude and aspect ratio. Sriram et al.
ll rights reserved.
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[12] made analysis of variations and flow structures in a periodi-
cally lid-driven cavity at different frequencies, amplitudes and
Reynolds numbers. It was found that at very low Re, the flow
throughout the periodic driven cavity qualitatively resembles the
classical steady lid-driven cavity flow. On the contrary, at high
Re, the entire cavity is occupied with multiple vortices. Recently,
Khanafer et al. [13] have performed numerical simulations to
investigate the effects of a number of pertinent dimensionless
parameters, namely the Reynolds number, Grashof number and
the dimensionless oscillation frequency of the sliding lid on un-
steady mixed convection in a driven cavity using an externally ex-
cited sliding lid.

The single lid-driven cavity flow problems were extended to
the case of two-sided lid-driven cavity flow by some researchers
[14–17]. Kuhlmann et al. [14] performed experimental and theo-
retical investigations for the two- and three-dimensional flows dri-
ven by anti-parallel motion of two facing walls. Their results
indicated that the existence of non-unique two-dimensional stea-
dy flows depends upon the cavity aspect ratio and the Reynolds
number. Albensoeder and Kuhlmann [15] studied the three-
dimensional instability of two counter-rotating vortices in the cav-
ity flow driven by two parallel moving walls with the same speed.
They made numerical investigation about the type of instability
and the dependence of the critical Reynolds and wave number
on the aspect ratio. Furthermore Albensoeder and Kuhlmann [16]
investigated the stability balloon for the double-lid-driven cavity
flow. The flow is driven by the parallel or anti-parallel motion of
two facing walls. When the cavity is infinitely extended in the
spanwise directional variety of different three-dimensional flow
instabilities can arise.
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Nomenclature

Re Reynolds number, u0H/t
Gr Grashof number, gb(TH � TC)H3/t3

Pr Prandtl number, t/a
Nu average Nusselt number
Cf friction coefficient
H cavity height (m)
u0 constant lid speed (m s�1)
TH temperature of the bottom lid (K)
TC temperature of the top lid (K)
g gravitational acceleration (m s�2)
t non-dimensional time
f non-dimensional frequency

p non-dimensional pressure
u non-dimensional velocity component in the x-direction
v non-dimensional velocity component in the y-direction
x, y non-dimensional Cartesian coordinates

Greek symbols
- non-dimensional oscillation angular frequency, xH/u0

x oscillation angular frequency
h non-dimensional temperature
t kinematic viscosity of fluid (m2 s�1)
a thermal diffusivity (m2 s�1)
b coefficient of thermal expansion (K�1)
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Luo and Yang [17] observed fluid flow and heat transfer in a
two-sided lid-driven cavity with an aspect ratio of 1.96 numeri-
cally. The top and bottom lids of the cavity have different tem-
peratures and move in opposite directions to generate a
temperature gradient and thermal transport. The Reynolds num-
ber and the Grashof number are used as main parameters for the
isothermal and the non-isothermal flow cases, respectively.

Among the studies of square cavity flows, we believe that there
is no available manuscript about oscillatory double-sided lid-dri-
ven cavity flow. The present study is performed to observe this
type of flow numerically. The dimensionless lid oscillating angular
frequency, -, together with Reynolds number are considered as
two important parameters in this present study. The numerical
scheme was validated with the cavity flow with oscillating lid of
Khanafer et al. [13].
2. Problem description and numerical procedure

2.1. Problem description

A two-dimensional square cavity is considered for the present
study as shown in Fig. 1. The top and bottom walls are considered
as oscillating lids following the cosine function u = u0 cosxt and
u = �u0 cosxt, respectively, while the no-slip condition is imposed
Fig. 1. Problem description and geometry of the square cavity.
on the solid walls. The bottom wall is sustained at a higher temper-
ature and the vertical walls are assumed to be adiabatic. The work-
ing fluid is air with constant Pr = 0.71. There are two important
parameters in this study, i.e., Reynolds number, Re, and dimension-
less oscillating angular frequency of lid motion, -, defined as
- = xH/u0 where -, u0 and H are lid oscillation frequency, maxi-
mum lid speed and cavity height, respectively. Re and - vary from
10 to 1000 and from 1 to 5, respectively. Buoyancy effect was not
considered except for validation.

2.2. The governing equations

The two-dimensional Navier–Stokes, continuity and energy
equations in primitive variables for an unsteady incompressible
laminar viscous flow with the Boussinesq assumption are denoted
in dimensionless forms using the following dimensionless
variables

x ¼ x�

H
y ¼ y�

H
u ¼ u�

u0
v ¼ v�

u0
h ¼ T � TC

TH � TC

p ¼ p�

qu2
0

Re ¼ uH
t

Pr ¼ t
a

Gr ¼ gbðT � TCÞH3

t2 ð1Þ

Hence, the non-dimensional governing equations are continuity
equation,
Fig. 2. The typical grid arrangement, 125 � 125 grid size.
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where u, v, p and h are the dimensionless variables of velocity com-
ponents in the x- and the y-directions, pressure and temperature,
respectively, Re, Gr and Pr are the Reynolds number, Grashof num-
ber and Prandtl number, respectively. The dimensionless average
Nusselt number is determined along both the top and bottom walls
using the formula,

Nu ¼ �
Z 1

0

@h
@y

dx ð6Þ

Also, the friction coefficient along the oscillating lids is given by,

Cf ¼
2

Re
@u
@y

ð7Þ
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The diffusive terms of Eqs. (3) and (4) are discretised using the
second-order central difference scheme while the convective terms
are discretised using the quadratic upstream interpolation for con-
vective kinetics (QUICK) scheme. The fourth-order Runge–Kutta
method is used for the solution of the transient terms while the
pressure terms are solved by using SOLA method [18].

The dimensionless time step of 10�3 was used and the mass
residual criterion equal or less than 10�5 was employed at each
time step in this work. We performed simulations for the lid mo-
tion at constant velocities (u = u0 = 1 and u = �u0 = �1 for top and
bottom lids, respectively) till the steady solutions are reached
using these results as the initial conditions of all simulations with
the oscillating lids. The solutions should be identical at every cycle
in the periodic state.

2.3. Validation of the in-house numerical code

Since there is no public data for flows inside a double-sided
oscillating lid-driven cavity, the established numerical code was
validated with the previous results with a single oscillating lid
[13]. We performed a systematic grid refinement study, i.e.,
75 � 75, 100 � 100, 125 � 125 and 150 � 150 grid to obtain the
grid independent solution. Furthermore a 125 � 125 clustered grid
with the smallest cells 0.0025 at the corner of the cavity and the
biggest cell 0.015 at the center of the cavity are chosen for all sim-
ulations in the present study. The typical grid arrangement is
shown in Fig. 2.

The simulation was done for Re, Gr and - equal to 1000, 100
and 1, respectively, where the gravitation is in �y-direction. The
streamline and isotherm contours during a period are presented
in Fig. 3 while the variations of the average Nusselt number on
the top and bottom wall are shown in Fig. 4. It is found that there
is a good agreement between the present results and the previous
study performed by Khanafer et al. [13].

3. Results and discussion

3.1. Flow patterns

According to the results obtained by the numerical model, it
is found that the flow patterns, in terms of primary vortices,
can be categorized into four modes: (i) a pair of vertical vortices,
(ii) a pair of swing vortices, (iii) diagonal-dominated vortices and
(iv) two pairs of swing vortices. It is noted that apart form the
validation of the present numerical code buoyancy effect was
not considered for all the cases in the present simulations. For
all cases in the present study, about 18 cycles are required to
reach the periodic state from the initial conditions. Furthermore,
the conditions at the 19th cycle are taken as a typical solution
for a period at each case in this present study. The periodic con-
dition is represented by plot of time histories of u- and v-veloc-
ity as shown in Fig. 5.

3.1.1. A pair of vertical vortices
Jeong and Hussain [19] defined a vortex in an incompressible

flow in terms of the eigenvalues of the symmetric tensor S2 + X2,
where S2 and X2 are the symmetric and antisymmetric parts of
the velocity gradientrui, respectively. This definition is the under-
lying reason in representing the vortex core geometry correctly in
unsteady low Re flows as occurs in our mode. This mode exists at a
very low Reynolds number less than 10 and represented by flow
patterns shown in Fig. 6. At t = 0.25T and t = 0.75T, the lids are at
rest instantaneously. After this time step, the direction of lid mo-
tion starts changing to the opposite side. The vortex core becomes
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Fig. 6. Streamline contours during a period, Re = 10, - = 1 (first mode).
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elongated vertically and a small separatrix is forming during two
parts of a single cycle. It becomes smaller and subsequently forms
a single primary vortex at the center of cavity when the lids decel-
erated (Fig. 6c–f). The saddle point existed and located at the cen-
ter of cavity. The streamline patterns are very similar during the
two half cycles. There is a particular symmetry operation involving
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time and the signs of the space coordinates and the velocity as
shown in Figs. 5 and 7. We plot the time history of the u- and v-
velocity at the center of the cavity (Fig. 5). It can be observed that
the velocities change symmetrically after a half of period
(T = 2p = 6.283). Similarly, the plot of u-velocity along the vertical
centerline and v-velocity along the horizontal centerline at
t = 0.375T and t = 0.875T indicate the symmetry operation between
two parts of single cycle.

The simulations at the higher - made a pair of vertical vortices
bigger than the lower value of - (Fig. 8). Nevertheless, the incre-
ment of - up to 5 did not offer significant effect to change flow
field. The flow patterns are stable and periodic with respect to
two-dimensional perturbations and can still be categorized as the
first mode.

3.1.2. A pair of swing vortices
The second mode is found at increasing Re and represented

by Figs. 9 and 10. As the Re is increased, the flow will develop
continuously. The two co-rotating eddies embedded in the main
vortex (Fig. 9a and e). The size of the eddies is found smaller
when the lid motion decelerated (Fig. 9b and f). These eddies
merge together to form a single eddy in the middle of the cavity
while the wall are emerged at the top and bottom lids. These
wall eddies detach from the moving lids and grow inward
(Fig. 9c and g). Eventually the middle eddy shrink and a pair
of eddies is formed form the wall eddies (Fig. 9d and h). We
could name these eddies as a pair of swing vortices since the
condition at the first half of period was repeated with the oppo-



Fig. 9. Streamline contours during a period, Re = 100, - = 1 (second mode). Fig. 10. Streamline contours during a period, Re = 500, - = 1 (second mode).
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site direction at the second half of period. The streamline pat-
terns shown in Fig. 9a and e are taken as representation of this
mode. The evolution of vortex formation of this mode differ form
the first mode by detaching the eddy from the wall while in the
first mode the vortex core is appeared in the bulk.

For high Reynolds numbers vortices are created near the
downstream end of the moving lid. The acceleration by the mov-
ing lids will move the embedded eddies closer to the wall. As a
consequence, a counter-rotating eddy is created in between.
They detach from the moving lid and propagate along the sta-
tionary wall by following the lid motion (Fig. 10a, b, e and f).
These eddies grow inward to form primary vortices when the
lid motion changed to the opposite direction (Fig. 10c and g).
At t = 0.375T (Figs. 9 and 10c), the flow fields are divided to be



Fig. 11. The initial evolution of flow field inside a square cavity with double-sided
constant lid motion at Re = 1000.

==========>

<==========

Fig. 12. The initial condition for Re = 1000, - = 1.

Fig. 13. Streamline contours during a period, Re = 1000, - = 1 (third mode).
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three regions. The vortices at the middle then broke out and re-
placed by the primary vortices coming from the top and bottom
areas to form a pair of vortices with the saddle point at the cen-
ter of the cavity (Figs. 9 and 10d).



Fig. 14. Streamline contours during a period (the stirred initial condition),
Re = 1000, - = 1.

Fig. 15. Streamline contours during a period, Re = 1000, - = 5 (fourth mode).

D.Z. Noor et al. / International Journal of Heat and Mass Transfer 52 (2009) 3009–3023 3017
3.1.3. Diagonal-dominated vortices
Guermond et al. [20] investigated start-up flows in a three-

dimensional rectangular driven cavity at Re = 1000. The initial
evolution of this flow is studied up to the dimensionless time
t = 12. The initial velocity field is zero in the entire cavity. As
soon as the lid is set in upward motion, high shear stress devel-
ops along the cavity lid and generates a counter-clockwise-rotat-
ing primary eddy located close to the upper right corner.
Furthermore, this primary eddy grows and moves towards the
cavity center. As time increases, an additional clockwise-rotating
secondary eddy appears at the mid-height of the upper wall.
This wall-eddy grows and moves towards the upper left corner,



Fig. 16. Classification of flow fields.
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and ultimately evolves to form the downstream secondary eddy
in the established flow.

To compare our study with the work done by Guermond et
al. [19], we performed the initial evolution for double-sided con-
stant lid motion flow at Re = 1000. The temporal sequence of the
θ
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Fig. 19. Temperature profile along the y-direction at the mid-section of the cavity
(x = 0.5), Re = 10, - = 1; t = 0.5T (first mode).
streamline contours are shown in Fig. 11. At the beginning, the
two clockwise-rotating eddies are formed at the bottom left cor-
ner and the upper right corner of the cavity (Fig. 11a). As time
increases, these eddies move towards the center of the cavity
and form a single primary eddy at the cavity center. During
the dynamic evolution, this primary eddy changes until reach
the steady solution as shown in Fig. 12. We use this steady solu-
tion as the initial condition for our simulation. Initially, it is
apparent that the cavity is occupied by the primary diagonal
eddy. This eddy is stretched and the dividing streamlines as well
as the corner eddies are formed when the lids start to oscillate
(Fig. 13). Even though the emerging corner eddies seem to affect
the flow patterns during a period as occurs in the second mode,
the diagonal eddies still exist and dominate the entire cavity.
Furthermore we could call this case the diagonal-dominated vor-
tices mode which falls for Re within the range of 700 6 Re 6
1000 and - = 1.

To further investigate the effect of the initial condition, we ap-
plied the stirred initial condition, i.e., the lids move oscillatory from
the beginning while the fluids are at rest in such away that the
diagonal-dominated vortices are not presented (Fig. 14). The evo-
lution of vortex formation does not follow the second mode. The
vortices occupy the entire cavity during the first half period are dif-
ferent from the second half of the period.

3.1.4. Two pairs of swing vortices
In the case of oscillatory Stokes flows evolving eddy structures

in domains with sharp corners, Branicki and Moffatt [21] investi-
gated the effect of the dimensionless frequency on the flow struc-
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tures. For flow reversal in an oscillating square domain at low fre-
quency, the eddies emerge at the four corners of the domain in
opposite sense to the central eddy. These eddies grow inward
and create a heteroclinic connection. As time increase, the connec-
tion shrinks and eventually annihilates the central eddy and the
next flow reversal progress in a similar way. In contras to the flow
reversal at low frequency, the corner eddies for higher frequency
flow blend into Stokes layers and associated wall eddies which de-
velop near the boundary. The flow reversal in the interior is real-
ized through a series of global bifurcations involving wall eddies
rather than the primary corner eddies.

Our simulation for higher Re and low - (Re = 1000 and - = 1)
indicates similar flow behaviors with those of [20] as shown in
Fig. 13. The corner eddies which are emerged at the downstream
corners grow up when the direction of lid motion change
(Fig. 13b–e), however, these corner eddies do not annihilate
t

A
ve

ra
g

e
N

u

146 148 150 152 154
0

1

2

3

4

5

6

Re = 10
Re = 500
Re = 1,000

Fig. 23. Average Nusselt num
the diagonal central eddy. The dividing streamlines keep the
central eddy rotates in clockwise direction while the corner ed-
dies rotate in clockwise and counter-clockwise direction alterna-
tively during a cycle. In contrast to the low - where the
emerging corner eddies expand into the interior and play a pri-
mary role in the flow reversal, the merging corner eddies for
higher - are ejected from the moving lids and travel along the
walls from one corner to the others (Fig. 15c–d). These eddies
eventually shrink into the Stokes boundary layers which domi-
nate the flow structures near the walls. We observe that the sad-
dle point always exist at the center of the cavity during a cycle.
The dividing streamlines separate flow field in four region and
avoid them transgressing each other.

Increase of oscillating frequency up to 5 changed the flow
patterns become two pairs of swing vortices mode for medium
and high Re as shown in Fig. 15. This mode is the fourth mode
that has the similar behavior with the second mode. Two pairs
of swing vortices existed and appeared alternatively after half
of a period.

Finally, the modes of the flow patterns are presented in Fig. 16.
The first mode is found at low Re for all values of - given in this
study. The second mode falls into large range of Re,
10 < Re < 700. For higher than 700, the third mode appears. The
critical Re is found in the range of Re 290–320. Beyond this value,
increase of - creates the fourth mode. We notify that the classifi-
cation of the flow patterns as mentioned above is taken from the
solutions during a period at the 19th cycle based on steady lid mo-
tion as an initial condition. The stirred initial condition, as shown
in Fig. 14, is not included in this classification.

The time histories of Cf along the top and bottom lids are
analyzed using FFT technique. Fig. 17 reveals the power spec-
trum of C2

f at various Re and -. There is a main appearing fre-
quency at low Re (Fig. 17a). This main frequency is resulted
from the motion of lids with - = 1. Actually, for - = 1 the flow
is even harmonic. The peaks of the spectrum of C2

f are found
weaker at higher Re (Fig. 17c and e). It indicated that Cf along
lid surfaces is decreased as Re increased. The other harmonic fre-
quencies are also found indistinctly at the higher Re (Fig. 17c
and e). When - increases up to 5, apart from the peak/main fre-
quency at - = 5, the other harmonic frequencies are found obvi-
ously at - = 10 and - = 15 (Fig. 17b, d and f). The second and
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the third harmonic frequencies just twice and three times the
main frequency, respectively.

3.2. Isothermal profiles and average Nusselt numbers

At very low Reynolds number, the isothermal temperature con-
tours during a period are shown in Fig. 18. It is observed that the iso-
thermal contours were closed to the linear profile in which
conduction is dominant. Plot of the linear temperature profile along
the y-direction at the mid-section of the cavity (x = 0.5) indicates this
phenomenon in Fig. 19. Flows at higher Re tend to increase the ex-
erted shear force which creates higher momentum and energy trans-
fer inside the cavity (Figs. 20 and 21). The flow fields for these cases
are shown in Figs. 9 and 10, respectively. The temperature profiles
were more complex than the previous one (Fig. 18) which was de-
fined by the action of the primary and secondary vortices. The lower
temperature regions along the x-direction were found at the loca-
tions wherein the vortices existed. The isotherms were accordingly
clustered close to the hot bottom wall, which manifested the exis-
tence of high temperature gradient in the vertical direction. The pro-
files of temperature contours along the y-direction at the mid-
section of the cavity (Fig. 22) give strong indication that convective
heat transport becomes increasingly important compared to the dif-
fusive heat transport. Furthermore, heat transport process becomes
more effective in these cases which can be seen obviously from the
plot of average Nusselt number, Nu, on the bottom and top lid as
shown in Fig. 23. Nu increased at the higher Re.

At small frequency of lid motion, -, the oscillatory lid motion
appreciably affected the bulk of the interior fluid. The augmentation
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Fig. 24. Temperature contours during a pe
of convective heat transfer was apparent at this condition. On the
contrary, when the frequency was increased, the lid motion affected
only the fluids confined in a shallow layer adjacent to the lids as
shown in Fig. 15, i.e., the Stokes boundary layer is predominant in
this case. This caused the weak interacting vertical structures of
the fluid in the bulk of the interior region (Fig. 24) and leads to poor
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heat transfer. The temperature profile at the mid-section of the cav-
ity along the y-direction, as shown in Fig. 25, tended toward a linear
distribution that indicated existence of domination of conduction in
this case. Clearly, this situation is reflected on the magnitude of pre-
dicted average Nusselt number at the bottom and top lids as shown
in Fig. 26. Finally, we observe that the isothermal contours of all the
modes, except for the third mode, have symmetric conditions during
two parts of a single cycle. It is confirmed by the corresponding
streamlines for each case at the same time period.
4. Conclusions

The flow and heat transfer are observed in a square cavity with
double-sided oscillating lids in anti-phase. At simulations at Re up
to 1000 and - = 1, the flow patterns are classified into three
modes, i.e., a pair of vertical vortices, a pair of swing vortices and
diagonal-dominated vortices. As - increased up to 5, the fourth
mode, called as two pairs of swing vortices, was created at Re high-
er than 300. Increasing - up to 5 at Reynolds number less than 300
gave variations on vortex sizes throughout the entire flow field.
Nevertheless, it was not strong enough to change the mode of flow
pattern. The flow patterns still can be categorized as the first mode
and the second mode.

Heat transfer rates from the hot bottom lid to the cool top lid
were affected by Re and -. Higher heat transfer rates, indicated
by Nu values, were found at higher Reynolds number flows due
to the increase of fluid activities in the bulk of the interior fluids.
On the contrary, heat transfer has become ineffective at high
oscillating frequency since the motion of lids just affected the
adjacent fluid layers. It is believed that an appropriate value of
- can enhance the overall heat transfer across the system
boundaries due to the occurrence of resonance [10].
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